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Effects of moderately large Reynolds numbers R are studied by considering 
higher order terms in the expansions for turbulent pipe and channel flows for 
R -+ 03. Matched asymptotic expansions using two length scales are employed 
to emphasize the two-layer structure of turbulent shear flows near solid walls. 
The effects appear as additional terms in extended forms of the law of the wall, 
the logarithmic velocity law, the velocity defect law and the logarithmic skin- 
friction law. These generalizations are critically compared with experimental 
results for pipe flows of Patel & Head and extremely good agreement is obtained. 
Also, possible applications are discussed for extending the range of skin-friction 
and heat-transfer devices which are based on wall similarity, 

1. Introduction 
Properties of turbulent shear flows a t  moderately large Reynolds numbers? 

have attracted the attention of several workers in recent years. For instance, 
Patel & Head (1969) reported new observations on turbulent pipe and channel 
flows in the Reynolds number range (based on average velocity and pipe diameter 
or channel depth) 1-104. Huffman & Bradshaw (1972) have recently performed 
calculations on the basis of a closure hypothesis for a similar range of Reynolds 
numbers. 

The aim of this paper is to study some of these properties by using asymptotic 
expansions for large Reynolds numbers. Higher order terms in the expansions 
describe Reynolds number effects which may be detected experimentally when 
the Reynolds number is not too large. 

Asymptotic expansions for turbulent shear flows have of late been increasingly 
studied (Gill 1968; Tennekes 1968; Yajnik 1970; Afzal & Yajnik 1971; Afzal 
1971, 1973; Chawla & Tennekes 1973; Mellor 1972). Higher order effects in pipe 
flow were first studied by Tennekes (1968) using a hypothetical analogy between 

t The phrase moderately large Reynolds number is used here to denote the range 
beyond completion of transition in which some Reynolds number effects in classical 
correlations have been found. 
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these higher order effects in pipe flow and the first-order effects in the zero-skin- 
friction turbulent boundary layer (Tennekes 1966; see also Chawla & Tennekes 
1973). 

The analysis given here is free from the customary uncertainty arising from 
closure hypotheses, since it deals with an underdetermined system of equations. 
Since functional forms describing qualitative properties of the flows can be 
obtained by limiting and matching arguments and by integration processes, it 
is not necessary to make the system fully determined, However, the determina- 
tion of a unique flow for given boundary conditions using limiting equations 
requires additional information directly or indirectly describing the statistical 
mechanics of turbulent fluctuations. 

While the method in its essential content is general, attention is focused on 
fully developed pipe and channel flows, for which extensive data exist. Higher 
order effects in boundary layers are discussed by Afzal (1971, 1973) and Mellor 
(1972). 

2. Analysis 
Consider the fully developed turbulent flow of a constant-property Newtonian 

fluid in a hydraulically smooth pipe or channel. Here the fully developed state 
refers to invariance of the mean velocity, pressure gradient and Reynolds stresses 
in the streamwise direction, but the flow need not be fully developed in any of the 
three senses discussed by Pate1 & Head (1969). 

It is convenient to start from an integral of the mean motiont (see, for example, 
Hinze 1959) written as 

EU,Ur-r = U2,(1-2y). (1)  

Here all variables are in non-dimensional form with the pipe diameter or channel 
depth and the cross-sectional average of velocity as the reference length and 
velocity. y is the normal co-ordinate measured from the wall and U and are 
the mean velocity and Reynolds stress. E is defined as (U*B)-I, where U, is the 
dimensionless friction velocity and R is the Reynolds number based on the 
reference length and velocity. A prime denotes differentiation with respect to  y. 

Conditions at  the wall require that U ,  r ,  r’ and r” vanish there and additional 
conditions at  the pipe axis or channel plane of symmetry may be obtained by 
assuming symmetry of the mean flow. 

We seek two limits and two corresponding asymptotic expansions which 
describe the flow region close to the wall and the flow region away from it. The 
length scales of these regions are of order 8 and unity. However, the corresponding 
scales for the inner and outer parts of a turbulent boundary layer are of order 
E and U,, and their ratio is $ = (U: R)-l, while in pipe and channel flows the ratio 
is 6 = (U*R)-I. Hence the appropriate expansion parameter for pipe and channel 
flows turns out to be E and not 2 as pointed out by Mellor (1972). 

We introduce outer variables U, = (U  - l)/U* and ro = r/U: and inner 

The integral in the above form is applicable to  both pipe and channel flows. When 
the integrals are written in terms of the pressure gradient, one term differs by a factor of +. 
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variables zci = U/U,, T~ = T~UZ, and 7 = y/s. Equation (1) can be then written in 
these variables as 

auo/ay - To = 1 - 2y (2) 

and dU& -Ti = 1 - 2sq. (3) 

These equations contain only E and are in a very simple form. One may hope 
that expansions are in integral powers of e. Let the outer and inner expansions be 

uo = ~l(Y)+~~2(Y)+~2~3(Y)+...7 ( 4 4  

70  = T’(y) + ET&) + e2T3(y) + . . . ; (4b) 

ui = u,(q) + “UZ(7) + E2U3(7) + . . . , (5a)  

7i = 71(q) + “&) + €27S(V) + . . . . ( 5 b )  

Here the outer and inner limits are for fixed y and fixed rg as a -+ 0, I/€ being the 
Reynolds number based on the friction velocity. 

It then follows from (2) and (3) that the outer and inner equations are 

TI = 2y- 1, 

dU,/dy = T, (m = I, 2); 

Matching 
There are several ways of matching inner and outer expansions. We shall use 
here the matching condition given by Van Dyke (1964, p. 90): 

9rn@n(f) = @n4n(, f ) ,  (8) 

where &(f) and Orn( f )  denote the m-term inner and outer expansions of the 
function f. 

When we match the Reynolds stress in the inner and outer region for m = I ,  2 
and n = 1 we find that T~ N - 1 and 7 2  N 27 as 7 +- co. The simple forms of (6) 
and (7) suggest that expansions of T~ and 72 in integral powers of q may be 
adequate. Such expansions are consistent with the assumption of the expansions 
(4) and (5) in integral powers of e. We then assume that 

Now the two-term inner expansion of r may be expressed in the outer variable 
y using (9 a)  and ( 9 b ) :  

92(7) = UX2y - 1 + &/y + a,) + e2(c1/y2 + b2/y +a3)]. (10) 

Here a3 is a constant term in the expansion for T ~ .  The matching conditions for 
m = 2 and n = 2 , 3  give 

T2 N b,/y+a,+ ... 
T3 N c,/y2+b2/y+a3+ ... as y -j. 0. 
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Equations (6) and (7 )  lead to expansions of dUn/dy and dun/dy in integral 
powers of y and 7. We find that the expansions for dU/dy in the overlap region 
are given by 

dU,/dy N (bl/y+a2+ ...)+ e(cl/y2+b2/y+a,+ ...)I-... as y-fo, ( 1 2 4  

du,/dy - (bl/y + cl/r2 + . . .) + €(az + b,/y + cz / r2  + . . .) + . . . 

Explicit forms for the wall region can be obtained froin integration of ( 7 )  by 

as n -+ co, ( 1 2 b )  

and they satisfy the matching conditions (8). 

using the matching and boundary conditions: 

ul = h l n  +r)  + '1(7)7 (134 

The integrals are bounded as y + co and cYij is the Kronecker delta. 
Similarly, explicit forms for the core region can be obtained from (6) as 

Ul = bllnY+Al(Y), 

U2 = - cl/y + b, In y +A&). 
Here the An are given by 

(n = 1,2). (16) 
The integrals are bounded as y + 0. 

If we now match the mean velocity, we get 

where k = l/blz 

3. Skin friction at moderately large Reynolds number 

skin-friction coefficient C, = 2 U i :  
The effects on the skin friction are readily seen by rewriting (17) in terms of the 

(2/Cf)+ = - k-lln + D, - b,eln e+ (D3 + kb,D,) 8 + . . . (18) 

and e = [R(+C,)4]-1. (19) 

Here the effect which could manifest itself first at  moderately large Reynolds 
number is the dependence of the coefficient of the logarithmic term and the 
additive coefficient. 
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It is indeed well known that a t  moderately large Reynolds number there are 
significant departures from the classical logarithmic law. Patel & Head (1969) 
and others have shown that the skin friction in pipe flow falls below the logarith- 
mic value at  low Reynolds number; Patel & Head fitted their data to 

C, = 0.079R-4 (20) 

in the range 3000 < Re < 10000. We now examine whether the extended logarith- 
mic law (18) can describe the skin-friction measurements in a pipe in the range 
for which the Blasius law (20) is commonly used. 

We first need to determine the value of k. In  the literature the values of k 
employed range from 0.36 to 0-417 (Schlichting 1968; Coles 1956, 1968; Goldstein 
1965). Further, a closer examination of the available experiments shows that 
I% is evaluated by fitting a straight line to the plot of (2/Cf)* vs. Ins over a wide 
range of Reynolds numbers. However, we see that according to (18) the curve 
tends to become a straight line asymptotically only as R approaches infinity. 
Thus in the present context the value of k has to be found by examining the 
slope of the curve (2/Cf)4 vs. Ins at large Reynolds number rather than by fitting 
a straight line over a wide range of Reynolds numbers as was done by other 
authors. An asymptote was drawn to the (2/Cf)4 11s. lne curve (Schlichting 1968, 
figure 20.9, p. 573) and the appropriate value of k seems to be 0.398, which is 
rounded off to 0.4. This value is compatible with values used by other authors, 
e.g. Hinze (1964) and Patel & Head (1969), although latter authors used a slightly 
different value of 0.41. 

Consider now the quantity Q (I/J2 times the difference between the left-hand 
side ($Cf)-B of (18) and the first two terms on right-hand side), 

QJ2 = ( 2/Cf)* + kiln e - D, (21) 

(221 = - b,sln s+  (0, + kb, D1) e+ . . ., 

which represents the departure from the classical logarithmic skin-friction law 
a t  moderately large Reynolds number. Patel & Head found that to the accuracy 
of their measurements the slope of the logarithmic velocity profile is independent 
of Reynolds number. If we accept this as at least a good engineering approxima- 
tion, it follows that b, = 0 and (22), using (19), becomes 

Q =D3(BJCf)-l+ .... (23) 

If Q is plotted against (RJCf)-l, the curve ought to approach a straight line as 
the Reynolds number approaches infinity. A plot of Q is given in figure 1 on the 
basis of data of Patel & Head for pipe flows. The slope of the asymptote gives 
D, = 150. 

The extended logarithmic skin-friction law? is 

C,' = 4.07 log,, (RJCf)  - 0.93 + 150(BJC')-1 + O(R/JC,)-'. (24): 

t The extended logarithmic law can be obtained by extending (see N. Afzal 1973, NAL 
AE-TM-2-73) a simple argument due to Millikan (1938) and Gill (1968). 
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FIGURE 1. Departure &, defined as C;:--4.07 log,, (R,/Cf)+0-93, of skin friction from 
classical logarithmic law for pipe flows at moderately large Reynolds number. , Patel & 
Head; -, Q = 150/(R,/Cf); -- -, Blasius law. 

The above law agrees to within 1 % with the data of Patel & Head (1969) and 
the Blasius law (20) down to a Reynolds number of 3000. Since the intermittency 
disappears at  approximately this Reynolds number, this value may be taken 
to denote the upper limit of transition, and the range of applicability of law (24) 
may be taken as the entire turbulent regime after the completion of transition. 

4. Velocity law in the overlap and sublayer regions 
The velocity distribution in the overlap region is given by 

(25) 

ri 1 c, --- lny+h,(oo)--+ ...+ e +... as ?+a. 
U* k 7 

In y - R,(O) - a2y + . . . + c - b21n y - R,(O) - a,y + . . . I - G  1 - N -- u* E 

as y+O: (26) 

and the corresponding relations for Reynolds stress can also be readily written 
down. As mentioned earlier, from the observations of Patel & Head, b, = 0. 
Now from (25) and (26) one notices that the higher order effects influence the 
additive coefficients of the laws. This is confirmed by the experiments of Patel & 
Head for pipe as well as for channel flows. If we consider the quantity 

B = +s(h,(w) +a,), (27) 
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FIGURE 2. Variation of B (the additive terms in the logarithmic velocity law for law of 
the wall) for pipe flows at moderately large Reynolds number. 0 ,  Patel & Head; ---$ 

B = 5.0 + 667/(R&f).  

the additive terms in the overlap region in the wall co-ordinates (25), the higher 
order effect is of the order e or (R4Cf)-l. The additive coefficient B for pipe flows 
is plotted against (RJC,)-l in figure 2 from the data of Patel & Head, and the 
asymptote to the data is found to be 

(28) 
As R approaches infinity the additive coefficient thus approaches 5 ,  which is 
the value recommended by Coles (1968). At lower Reynolds number the asymp- 
tote (28) underestimates the coefficient, by about 5 % at R = 4000 and about 
12 % at R = 3000, when compared with the data of Patel & Head for pipe flows. 

B = 5 + 667(R,/Cf)-'+. . . . 

The velocity distribution in the sublayer is given by 

u = u,[r+~rer~(o)+0(~4)1+u*e[- 472++z74~:(0) + O ( ~ ~ ) I + O ( U * C ) .  (29) 

In  (29) the term of order U, corresponds to the usual law of the sublayer (see 
Rotta 1962, p. 59) and the higher order term is the correction for lower Reynolds 
number. Also, the total shear stress in the inner layer behaves like 1 - 2 q .  

5. Measurement of skin friction at moderately large Reynolds number 
Wall similarity forms the basis for many skin-friction measuring devices 

including Presten tube, Stanton tube and the hot-film gauge. The range of these 
devices can be extended by using the generalization of the wall law given by (5 ) .  
For instance, the relationship between the Preston-tube variables can be modified 
using the correspondence with the extended wall law 

(30) To02/4p1/2 = f 1  + f 2 s  +f3€2 + . . . , 
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where the f, are functions of ( p o - p )  D2/4pv2. Here the usual notation is used. 
Alternative forms, as suggested by Head & Ram (1971), can also be used. The 
above relation thus provides a way of including moderate Reynolds number 
effects in Preston-tube calibration. However, calibration of these higher order 
effects carried out in, say, pipe flow can be applied to boundary-layer measure- 
ments only if the higher order effects have the same structure in both the flows. 

6.  Conclusion 
(i) It is possible to analyse properties of turbulent shear flows a t  moderately 

large Reynolds number by using the method of matched asymptotic expansions. 
It is not necessary to invoke any closure hypotheses for obtaining the functional 
forms of asymptotic laws for the skin friction and velocity profile. 

(ii) The extended skin-friction law (24) is different from the classical logarith- 
mic law in that the additive coefficient depends on Reynolds number The ex- 
tended law accurately predicts the skin friction over the entire turbulent regime 
R > 3000 (the upper limit of the transition regime). Before, two empirical laws 
were needed for this range. 

(iii) The additive coefficients in the overlap velocity laws (25) and (26) have 
a similar Reynolds number dependence. 

(iv) The extended form of the law of the wall provides a basis for extending 
the range of skin-friction and heat-transfer measuring techniques based on wall 
similarity. 

(v) The close agreement of results of the present work with the experimental 
data strongly supports the nature of higher order effects discussed here. However, 
the values of Ic, D,, D,, D,, etc., may need slight modifications when more 
accurate data becomes available. 

(vi) Comparison with channel flows has not been attempted as the experi- 
mental results of Patel & Head (1969), Clark (1968) and Beavers, Sparrow & 
Lloyd (1971) are controversial, and hence, no definite trends can be established. 
For example, the data of Patel & Head (1969) show that the additive term in the 
law of the wall remains constant (equal to the universal value) for all Reynolds 
numbers while Clark (1968) shows an increase in the value of the additive term. 
On the other hand, the skin-friction measurement of Beavers et al. (1971) also 
shows a large departure from those of Patel & Head (1969). Thus more extensive 
and accurate experiments are needed in channel flows. 
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correspondence. We also thank Prof. R. Narasimha and Prof. T. S. Prahlad for 
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comments. 
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